poudriere for Ports
Maintenance

Matthew Seaman
EuroBSDCon 2019 Lillehammer

« Ports committer since 2012

pkg(8) developer (lapsed)

* Former core secretary

+ Rank What do you do?

+ SerialNumber What do you want to learn?

+ if you don’t understand

- if you can’t hear me

- if you're having problems with the practical bits

+ Set up — building a poudriere system

+ Use — build & debug ports with that system

+ Talk — further uses for poudriere

ansible

dnspython (Ports: py36-dnspython)
ssh

2. Check out git repository:
git clone https://qgithub.com/infracaninophile/p4pm

https://github.com/infracaninophile/p4pm

passphrase

»Gain access to your VM:
ssh —1 classN_ed25519 ec2-user@classN.black-earth.co.uk

change to your assigned host

+Edit group variables: hosts/group_vars/all.yaml

create your own user account

U I U ¢ o - I\NCYV C JiadVUUUN,

ansible-playbook playbooks/keyscan.yaml
Updates ~/ . ssh/known_hosts

- This does keep a backup of your current kKnown_hosts

media
. Differences:

+Added First Boot actions to grow filesystem and apply system
patches

ec2—-user account

- Install python and sudo

+ Create personal user accounts

+ Setup pam_ssh_agent_auth for sudo

—user ec2-user —private—-key=keys/classN_ed25519

* You should be able to log in as your own user, and
sudo to root without being prompted for a password:

ssh —A username@classN.black—earth.co.uk
sudo -1

http://classN.black-earth.co.uk

+ The main event: run the poudriere playbook:
ansible-playbook playbooks/poudriere.yaml

+ This will take some time...

P P

()

- Installs some useful packages
- Installs and configures poudriere
+ Installs and configures nginx

- Installs a small script to run test builds

https://github.com/freebsd/freebsd-ports.git

system requirements

t2.micro instance (1GB RAM) is too small

- git is an arbitrary choice: any of the ways you could

install a ports tree are equally valid

ca_root_nss
mtr

rsync
arcanist—-php73

+ Customize this to your own requirements
hosts/group_vars/poudriere.yaml

https://github.com/vbotka/ansible-freebsd—-poudriere

+ Fairly heavily modified
https://github.com/infracaninophile/ansible-freebsd—-poudriere

https://github.com/vbotka/ansible-freebsd-poudriere
https://github.com/infracaninophile/ansible-freebsd-poudriere

+ install poudriere.conf

- install make.conf

- create ZFSes used by poudriere

- configure ccache

- register ports tree created earlier

- install jails — FreeBSD 11, 12 Release; i386 and amd64

- Configuration based on
https://github.com/freebsd/poudriere/blob/master/src/share/

examples/poudriere/nginx.conf.sample

- Useable as a pkg repository, but could be improved for
that purpose

+ Mostly interested in the build logs

https://github.com/freebsd/poudriere/blob/master/src/share/examples/poudriere/nginx.conf.sample
https://github.com/freebsd/poudriere/blob/master/src/share/examples/poudriere/nginx.conf.sample

» Builds all flavours

+ Enables ‘testing’ (bulk -t option)

+ Not too big

+ Not too many dependencies

textproc/jaq

+ Compilation success/failure

+ Diagnose most failures from the log file

+ eg. Easy fix for plist problems

- They are out of date

- Options have changed
- Jail updated

+ They’re another specific build target

* Per port:

poudriere options —-p development —c some/port

+ Per port and package set:

poudriere options —p development -z development —-c some/port

AUCILICU DV PadaCKdZC oL adllu pPpJu - C.

/usr/local/etc/poudriere.d/..

development—-development—-options/
development—options/
options/

Only the first matching directory tree is used

/usr/local/etc/poudriere.d/..

development—-development—-make.conf
development—-make.conf
make.conf

 The result is the combination of all of these files

€St oul

fix problems

test build

repeat until clean result
(...other tests...)

commit

builds:
SAVE_WRKDIR=yes

+ Good for:
fixing patches
autoconf problems
etc...

» Interactive build fixes

poudriere bulk —-trk -C -j 12_0a -z development \
—p development -i

+ Rarely required

+ Dependencies

+ Options / make.conf settings
+ Build output
Staging / Packaging

- PLIST testing

- But it will once port regression testing becomes

standard
+ Too hit-and-miss to enable currently

- Handling more complex CI requirements is hard

+ Committers will do this by default

+ ... but noting in a PR that changes pass poudriere
testing always helps

+ Poudriere can cross build for various ARM and MIPS

boards, but this is not a testing requirement

- You'll be notified by the package builders or by people
that specifically test on alternate architectures if

problems are found

+ Currently (2019-09-19) 11.1 and 12.0

+ ABI compatibility guarantee means software that works on an early
version of a branch will continue to work on all later ones

+ Except for loadable kernel modules

+ Converse not necessarily true: newer packages may not work on older
branches

for

+ HEAD usually conforms, but it’s a dev branch and
there may be the odd bump in the road

+ Running older poudriere jails on HEAD will work fine

libreoffice

. Worse: some are very early in the dependency tree

1 LvmNN

gcchN
openjdk

- Just be patient

+ Port build jails are not an exposed security surface

- So don’t be too religious about updating

+ Unless you're building statically linked software and the

vulnerabilities are in system libraries

+ Keep your build box well updated and secured though

uild a whole list of packages
+ Customize port options / make.conf
- Only build the flavours you need

+ Tweak nginx.conf to add alias matching the ${ABI} setting pkg(8)

generates

+ Custom repo.conf and repository keys

+ Core2Duo with 8GB RAM and 250GB SSDs can update a
repo of around 1000 packages within a hour or so each

week

- Most modern desktop or laptop machines will be able to
run a poudriere repo without problems

+ Any questions?

