
poudriere for Ports
Maintenance

Matthew Seaman  
EuroBSDCon 2019 Lillehammer

Who am I?

• FreeBSD Admin since the last millennium

• Ports committer since 2012

• pkg(8) developer (lapsed)

• Former core secretary

Who are you?

• Name

• Rank What do you do?

• Serial Number What do you want to learn?

Ground Rules

• Ask questions — hands-up any time

• Stop me

• if you don’t understand

• if you can’t hear me

• if you’re having problems with the practical bits

What are we doing today?

• Three parts:

• Set up — building a poudriere system

• Use — build & debug ports with that system

• Talk — further uses for poudriere

Set Up
1. Requirements:

• git  
ansible 
dnspython (Ports: py36-dnspython) 
ssh

2. Check out git repository:  
git clone https://github.com/infracaninophile/p4pm

https://github.com/infracaninophile/p4pm

Set Up

• Take a slip with the hostname and access key
passphrase

• Gain access to your VM: 
ssh -i classN_ed25519 ec2-user@classN.black-earth.co.uk

Set Up

• Edit ansible inventory: hosts/poudriere 
change to your assigned host

• Edit group variables: hosts/group_vars/all.yaml 
create your own user account

Set up

• (Optional) Run the keyscan playbook: 
ansible-playbook playbooks/keyscan.yaml 
Updates ~/.ssh/known_hosts

• This does keep a backup of your current known_hosts

Set Up
• VMs are t2.small instances installed using Colin Perceval’s ZFS AMIs  

https://lists.freebsd.org/pipermail/freebsd-cloud/2019-February/000200.html

• Essentially the same result as you’ld get from FreeBSD installation
media

• Differences:

• Added First Boot actions to grow filesystem and apply system
patches

• ec2-user account

Set Up

• We need to do some basic configuration to make
them fully capable ansible clients

• Install python and sudo

• Create personal user accounts

• Set up pam_ssh_agent_auth for sudo

Set Up

• Run the basics playbook: 
ansible-playbook playbooks/basics.yaml \ 
 —user ec2-user —private-key=keys/classN_ed25519

• You should be able to log in as your own user, and
sudo to root without being prompted for a password: 
 ssh -A username@classN.black-earth.co.uk 
 sudo -i

http://classN.black-earth.co.uk

Set Up

• The main event: run the poudriere playbook: 
ansible-playbook playbooks/poudriere.yaml

• This will take some time…

Set Up
• What the playbook does:

• Checks out  
https://github.com/freebsd/freebsd-ports.git

• Installs some useful packages

• Installs and configures poudriere

• Installs and configures nginx

• Installs a small script to run test builds

https://github.com/freebsd/freebsd-ports.git

Set Up: Installing ports

• The hardest thing we’re doing today in terms of
system requirements

• t2.micro instance (1GB RAM) is too small

• git is an arbitrary choice: any of the ways you could
install a ports tree are equally valid

Set Up: Useful Packages

• Development tools: 
tmux 
emacs-nox 
ca_root_nss 
mtr 
rsync 
arcanist-php73 

• Customize this to your own requirements  
hosts/group_vars/poudriere.yaml

Set Up: poudriere

• Based on Vladimir Botka’s  
 https://github.com/vbotka/ansible-freebsd-poudriere

• Fairly heavily modified  
https://github.com/infracaninophile/ansible-freebsd-poudriere

https://github.com/vbotka/ansible-freebsd-poudriere
https://github.com/infracaninophile/ansible-freebsd-poudriere

Set Up: poudriere
• install packages  

 poudriere 
 ccache

• create self-signed TLS certificate

• install poudriere.conf

• install make.conf

• create ZFSes used by poudriere

• configure ccache

• register ports tree created earlier

• install jails — FreeBSD 11, 12 Release; i386 and amd64

Set Up: nginx
• Uses the same self-signed TLS certificate generated by

poudriere

• Configuration based on  
https://github.com/freebsd/poudriere/blob/master/src/share/
examples/poudriere/nginx.conf.sample

• Useable as a pkg repository, but could be improved for
that purpose

• Mostly interested in the build logs

https://github.com/freebsd/poudriere/blob/master/src/share/examples/poudriere/nginx.conf.sample
https://github.com/freebsd/poudriere/blob/master/src/share/examples/poudriere/nginx.conf.sample

Set Up: test-build.sh

• Builds the listed ports in each of the jails

• Builds all flavours

• Enables ‘testing’ (bulk -t option)

Use

• Let’s build something

• Not too big

• Not too many dependencies  
 
 textproc/jq

Use

• What does the poudriere web interface tell us?

• Dependencies

• Compilation success/failure

• Diagnose most failures from the log file

• eg. Easy fix for plist problems

Use
• Builds all of the dependencies and build tools needed

• Only rebuilds dependencies when:

• They are out of date

• Options have changed

• Jail updated

• They’re another specific build target

Use

• Setting options

• Globally: poudriere options -c some/port

• Per port: 
 poudriere options -p development -c some/port

• Per port and package set: 
poudriere options -p development -z development -c some/port

Use

• Options are stored in a directory tree, possibly
labelled by package set and ports tree: 
 /usr/local/etc/poudriere.d/… 
 development-development-options/ 
 development-options/ 
 options/

• Only the first matching directory tree is used

Use

• make.conf settings — hierarchy of files, also
labelled by package set and ports tree: 
 /usr/local/etc/poudriere.d/… 
 development-development-make.conf 
 development-make.conf 
 make.conf

• The result is the combination of all of these files  

Use

• Typical development cycle: 
 edit port  
 test build 
 fix problems  
 test build 
 repeat until clean result  
 (…other tests…) 
 commit

Use
• More complicated debugging

• Poudriere config specifically keeps WRKDIR from failed
builds: 
 SAVE_WRKDIR=yes

• Good for: 
 fixing patches  
 autoconf problems  
 etc…

Use

• But wait! There’s more…

• Interactive build fixes  
 poudriere bulk -trk -C -j 12_0a -z development \ 
 -p development -i

• Rarely required

Use
• What the build log tells you:

• Port and build metadata

• Dependencies

• Options / make.conf settings

• Build output

• Staging / Packaging

• PLIST testing

Use
• What the build log doesn’t tell you

• Does the ported software run correctly?

• But it will once port regression testing becomes
standard

• Too hit-and-miss to enable currently

• Handling more complex CI requirements is hard

Use

• All updates to the ports should be run through
poudriere

• Committers will do this by default

• … but noting in a PR that changes pass poudriere
testing always helps

Use
• What about other architectures?

• Assume everyone has access to amd64/i386

• Poudriere can cross build for various ARM and MIPS
boards, but this is not a testing requirement

• You’ll be notified by the package builders or by people
that specifically test on alternate architectures if
problems are found

Use
• What about Operating System Versions?

• Test on earliest supported version from each major branch

• Currently (2019-09-19) 11.1 and 12.0

• ABI compatibility guarantee means software that works on an early
version of a branch will continue to work on all later ones

• Except for loadable kernel modules

• Converse not necessarily true: newer packages may not work on older
branches

Use

• Your build box needs to be newer than (or at least as
new as) the latest branch you want to build packages
for

• HEAD usually conforms, but it’s a dev branch and
there may be the odd bump in the road

• Running older poudriere jails on HEAD will work fine

Use
• Practical considerations

• Some ports take ages to build 
 libreoffice

• Worse: some are very early in the dependency tree 
 llvmNN  
 gccN  
 openjdk

• Just be patient

Use
• If you update your build jails, poudriere will want to rebuild

every package

• Port build jails are not an exposed security surface

• So don’t be too religious about updating

• Unless you’re building statically linked software and the
vulnerabilities are in system libraries

• Keep your build box well updated and secured though

Use
• We’ve talked about poudriere as a tool for ports maintenance

• Poudriere as a tool for generating your own repo is very similar

• Build a whole list of packages

• Customize port options / make.conf

• Only build the flavours you need

• Tweak nginx.conf to add alias matching the ${ABI} setting pkg(8)
generates

• Custom repo.conf and repository keys

Use
• System resource requirements

• Less than you might think

• Core2Duo with 8GB RAM and 250GB SSDs can update a
repo of around 1000 packages within a hour or so each
week

• Most modern desktop or laptop machines will be able to
run a poudriere repo without problems

Talk

• Any questions?

Talk: why “poudriere”?
Previous software: “Tinderbox”

Poudrière in French
but the word also translates to:

Gunpowder Magazine

